● Plant Growth
● Sap Flow
● Soil Moisture
Worldwide, the first highly accurate and maintenance-free instrument for measuring soil matric potential (0-15 bar).

Dendrometers ..Page 1-8
Highly precise, flexible and handy instruments for measuring changes of radius, diameter, circumference and stem length of plants.

SF-L Sap Flow SensorPage 9-10
Highly accurate Sap Flow Sensor

SF-G Sap Flow SensorPage 11
The well-known thermal dissipation probe (TDP) developed by Granier

EquitensiometersPage 12-15
Worldwide, the first highly accurate and maintenance-free instrument for measuring soil matric potential (0-15 bar).

Worldwide ReferencesPage 16-17
Dendrometer*

Why we need dendrometer?

Dendrometers are instruments for continuous measurement of plant growth (changes of the plant diameter). Data of dendrometer document the reactions of plants to environment in high temporal resolution.

In ecophysiological research environmental parameters are measured hourly or shorter. The plant parameters such as yield, biomass and tree rings are only available annually. It is quite difficult to compare hourly data with annual data. Significance of such cause-effect studies on different time scales is limited.

Dendrometer allows us to record the plant parameters at the same time interval, such as environmental parameters. The data therefore permit the direct assignment of plant responses to environmental influences. Dendrometer are therefore a cost-effective and useful tool for ecophysiological studies

Applications

- Monitoring of the growth processes of plants
- Monitoring the water status of plants
- Examination of the influence of environmental factors on plant growth
- Precise dating of the beginning and end of growing season
- Precise determination of the point of frost events
- Estimation of the water content in plants (in combination with sap flow measurement the transpiration can be calculated continuously)
- Irrigation control
- Monitoring and investigation of the stability of road and park trees or branches

Benefits of Ecomatik Dendrometers

- Protected by several patented techniques
- Low power consumption, as more than one year records only with an internal battery
- More than 15 years of worldwide use (more than 40 countries, polar regions, tropical, high mountain)
- Resolution up to 0.2 microns (depending on data logger)
- Temperature effect compensated
- Large selection for different measurement requirements: radius, diameter, circumference, fruit, vegetables, vertical changes
- Compatible with all popular data loggers (e.g. Campbell, Delta-T, Datataker). ECOMATIK provides a Dendrometer logger (DL15), which runs on an internal battery more than two years.

Available Dendrometer Types

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Suitable for diameter of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius dendrometer</td>
<td>DR</td>
<td>>8 cm</td>
</tr>
<tr>
<td>Diameter dendrometer small</td>
<td>DD-S</td>
<td>0-5 cm</td>
</tr>
<tr>
<td>Diameter dendrometer large</td>
<td>DD-L</td>
<td>3-30 cm</td>
</tr>
<tr>
<td>Circumference dendrometer 1</td>
<td>DC1</td>
<td>5-30 cm</td>
</tr>
<tr>
<td>Circumference dendrometer 2</td>
<td>DC2</td>
<td>>5 cm</td>
</tr>
<tr>
<td>Circumference dendrometer 3</td>
<td>DC3</td>
<td>>5 cm</td>
</tr>
<tr>
<td>Roots and aquatic Plants dendrometer</td>
<td>DRO</td>
<td>0-2 cm</td>
</tr>
<tr>
<td>Fruit, vegetable dendrometer</td>
<td>DF</td>
<td>0-11 cm</td>
</tr>
<tr>
<td>Vertical dendrometer</td>
<td>DV</td>
<td>>8 cm</td>
</tr>
</tbody>
</table>

* Patents pending
DR Radius Dendrometer

The sensor is anchored by two special screws in the heartwood. The changes outside of the heartwood correspond to the radial growth. The arrangement ensures high stability for long-term measurements.

Benefits
- Stability against wind, snow, falling branches and fruits
- Low pressure at the measuring point
- Suitable for large trees (diameter> 8 cm)
- Ideal for long-term measurement with less manpower

Limits
- Trunk is injured by drilling (the damage can be minimized by tree resin)
- Suitable only for larger trees (diameter > 8 cm)

Delivery
- Complete with 5 m cable

Options / Ordering Information
- Cable extension (please specify in meters)
- Installation tools (tree resin, hand drill)
- Data Logger

<table>
<thead>
<tr>
<th>Name</th>
<th>Radius Dendrometer (DR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter > 8 cm</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>11 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.5 µm ±0.12% (CR1000 data logger)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2 - 2.6 µm (dependent on data logger used)</td>
</tr>
<tr>
<td>Linearity</td>
<td><1%</td>
</tr>
<tr>
<td>Thermal expansion coefficient of sensor</td>
<td><0.1 µm/K</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Air temperature: -30 to 40° C, air humidity: 0 to 100%</td>
</tr>
</tbody>
</table>

DD-S Diameter Dendrometer Small

The DD-S is designed specifically for agricultural plants, small trees and branches (diameter < 5 cm). Due to a patented mounting method, the dendrometer also provides for very small plants stable readings.

Benefits
- Suitable for small trees and agricultural plants
- The plants do not have to bear the weight of the dendrometer
- Measures diameter changes
- No injury to plants
- Minimal load on the target
- Stability against wind, snow, falling small branches and small fruits
- Ordering by size of plants possible

Limits
- Not suitable for diameter greater than 5 cm (see Type DD-L)

Delivery
- Complete with 5 m cable
- Fixing materials and installation tools (wrench)

Options / Ordering Information
- Cable extension (please specify in meters)
- If necessary, different frame size
- Data Logger

<table>
<thead>
<tr>
<th>Name</th>
<th>Diameter Dendrometer Small (DD-S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter 0 - 5 cm (on request extendable)</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>11 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.5 µm ±0.12% (CR1000 data logger)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2 - 2.6 µm (dependent on data logger used)</td>
</tr>
<tr>
<td>Linearity</td>
<td>1%</td>
</tr>
<tr>
<td>Thermal expansion coefficient of sensor</td>
<td><0.1 µm/K</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Air temperature: -30 - 40° C, air humidity: 0-100</td>
</tr>
</tbody>
</table>
DD-L Diameter Dendrometer Large

The sensor is mounted on a patented fastening technology at the plant. The sensor remains stable fixed at the measuring point without exerting too much pressure on the measuring point. The model is suitable for diameter of 3-30 cm.

Benefits
- Suitable for diameter 3-30 cm
- Measures diameter changes
- No injury to plants
- Minimal load on the target
- Stability against wind, snow, falling small branches and small fruits
- Ordering by size of plants possible

Limits
- Not suitable for diameter greater than 30 cm

Delivery
- Complete with 5 m cable
- Fixing materials and installation tools (wrench)

Options / Ordering Information
- Cable extension (please specify in meters)
- If necessary, different frame size
- Data Logger

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Diameter Dendrometer Large (DD-L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter 3-20 cm (on request reducible)</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>11 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.5 µm ±0.12% (CR1000 data logger)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2 - 2.6 µm (dependent on data logger used)</td>
</tr>
<tr>
<td>Linearity</td>
<td>1%</td>
</tr>
<tr>
<td>Thermal expansion coefficient of sensor</td>
<td><0.1 µm/K</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Air temperature: -30 to 40° C, air humidity: 0 to 100%</td>
</tr>
</tbody>
</table>

DC1 Circumference Dendrometer

The Circumference Dendrometer 1 is the simple version for the measurement of circumference changes of plants. The sensor is mounted on the plant with a wire cable with a very low coefficient of thermal expansion. The slide rings reduce the friction between the wire cable and the tree bark. They also decrease the pressure of wire cable on the tree.

Benefits
- Suitable for diameter 5-30 cm
- No injury to plants
- Easy installation
- Stability against wind, snow, falling small branches and small fruits
- Readings directly correspond to the circumference changes

Limits
- Because of the tension of the wire cable is applied in the tangential direction the pressure of the wire cable to the tree depends on tree size. The smaller the tree, the greater the pressure. Thus the measured data between trees of different diameters are usually not comparable. In such cases, we recommend the use of Circumference Dendrometer 2 (DC2).

Delivery
- Complete with 5 m cables and 1 m wire cable

Options / Ordering Information
- Cable extension (please specify in meters)
- Extension of the wire cable (please specify in meters)
- Data Logger

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Circumference Dendrometer 1 (DC1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter 5-30 cm</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>11 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.5 µm ±0.12% (CR1000 data logger)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2 - 2.6 µm (dependent on data logger used)</td>
</tr>
<tr>
<td>Linearity</td>
<td>1%</td>
</tr>
<tr>
<td>Thermal expansion coefficient of sensor</td>
<td><0.1 µm/K</td>
</tr>
<tr>
<td>Thermal expansion coefficient of the wire cable</td>
<td><1.4 ×10⁻⁶/K</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Air temperature: -30 to 40° C, air humidity: 0 to 100%</td>
</tr>
</tbody>
</table>
DC2 Circumference Dendrometer 2

The DC2 is the improved version of the DC1. The tension is not applied in a tangential, but in the radial direction. The pressure of the wire cable to the tree is independent of tree size. The data of different tree sizes are comparable. The sensor is mounted on a wire cable with very low thermal expansion coefficient at tree. The slide rings reduce the friction between the wire cable and the tree bark. They also decrease the pressure on the tree.

Benefits
- Suitable for all tree sizes (> 5 cm)
- Pressure of the wire cable to the tree independent of tree size
- Automatic adjustment of the tension, sensitive measurements even with very large trees
- No injury to plants
- Stability against wind, snow, falling small branches and small fruits
- Easy installation
- Easy adjustment by the integrated turnbuckle

Limits
- The data must be converted (free Excel program available)
- The tree must be roughly circular

Delivery
- Complete with 5 m cable and 1 m wire cable

Options / Ordering Information
- Cable extension (please specify in meters)
- Extension of the wire cable (please specify in meters)
- Free Excel program for data conversion
- Data Logger

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Circumference Dendrometer 2 (DC2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter > 5 cm</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>15 mm</td>
</tr>
</tbody>
</table>

Range in diameter

<table>
<thead>
<tr>
<th>Tree Diameter (cm)</th>
<th>Measuring Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.9</td>
</tr>
<tr>
<td>50</td>
<td>6.6</td>
</tr>
<tr>
<td>100</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Accuracy

±2 µm ±0.12% (CR1000 data logger)

Resolution

0.3 – 3.6 µm (dependent on data logger used)

Linearity

2%

Thermal expansion coefficient of sensor

<0.1 µm/K

Thermal expansion coefficient of the wire cable

<1.4 x 10⁻⁶/K

Operating conditions

Air temperature: -30 to 40°C, air humidity: 0 to 100%

DC3 Circumference Dendrometer 3

The DC3 has the same structure as DC2. Only the sensor measuring range is greater than DC2. This meets the measurement requirements of fast-growing trees.

The benefits, limits, delivery, and ordering information of DC3 is the same as that of DC2.

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Circumference Dendrometer 3 (DC3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter > 5 cm</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>25 mm</td>
</tr>
</tbody>
</table>

Range in diameter

<table>
<thead>
<tr>
<th>Tree Diameter (cm)</th>
<th>Measuring Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>16.2</td>
</tr>
<tr>
<td>50</td>
<td>11.3</td>
</tr>
<tr>
<td>100</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Accuracy

±3.3 µm ±0.12% (CR1000 data logger)

Resolution

0.4 – 6 µm (dependent on data logger used)

Linearity

0.7%

Thermal expansion coefficient of sensor and wire cable, and Operating conditions are the same as that of DC2.
Fruit and Vegetable Dendrometer

Fruit and Vegetable Dendrometer is the special version for circular targets. The fruit in the measuring frame is firmly fixed without affecting its growth. The frame bears the weight of the target.

Benefits
- Suitable for diameter between 0 and 11 cm (other size on request)
- Fruits do not have to bear the weight of the dendrometers
- Measures diameter changes
- No Injury to fruits
- Stability against wind, snow, falling small branches and small fruits

Limits
- Not suitable for very soft fruit and vegetables (such as ripe tomatoes)

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Fruit and Vegetable Dendrometer (DF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter 0 - 11 cm (on request reducible)</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>15 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±2 µm ±0.12% (CR1000 data logger)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.3 – 3.6 µm (dependent on data logger used)</td>
</tr>
<tr>
<td>Linearity</td>
<td>2%</td>
</tr>
<tr>
<td>Thermal expansion coefficient of sensor</td>
<td><0.1 µm/K</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Air temperature: -30 to 40°C, air humidity: 0 to 100%</td>
</tr>
</tbody>
</table>

DV Vertical Dendrometer

The Vertical dendrometer is developed to determine the vertical changes (not growth) of trees continuously. Because the trees vary in length according to water status, wind direction and curvature, the vertical change is an interesting measure to assess the water status, mechanical stress, stability and direction of growth of the trees.

In order to cover the different causes (water status, curvature) separately, a parallel measurement is of three directions with three vertical dendrometers necessary.

Benefits
- Suitable for large trees (diameter > 8 cm)
- Stability against wind, snow, falling branches and fruits
- Trunk is injured by drilling (the damage can be minimized by tree resin)

Limits
- Trunk is injured by drilling (the damage can be minimized by tree resin)

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>DV Vertical Dendrometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter > 8 cm</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>11 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.5 µm ±0.12% (CR1000 data logger)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2 – 2.6 µm (dependent on data logger used)</td>
</tr>
<tr>
<td>Linearity</td>
<td>1%</td>
</tr>
<tr>
<td>Thermal expansion coefficient of sensor</td>
<td><0.1 µm/K</td>
</tr>
<tr>
<td>Thermal expansion coefficient of the wire cable</td>
<td><1.4 ×10⁻⁶/K</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Air temperature: -30 to 40°C, air humidity: 0 to 100%</td>
</tr>
</tbody>
</table>
The DRO Dendrometers is designed for continuous measurement of roots, aquatic plants and creepers. The device is waterproof. The sensor rod is protected with soft, light resistant rubber. The metal clamp protects the sensor from excessive pressure from topsoil. The unit has specific weight similar to water, when used under water therefore has no impact on plants. It is easy to install and maintenance free. By more than 1 year test, it has proven itself well.

Benefits
- Waterproof, suitable for use in/on the soil and under water
- Low pressure at the measuring point
- Ideal for long-term measurement with less manpower

Limits
- Only for diameter smaller than 2 cm

Delivery
- Complete with 5 m cable

Options / Ordering Information
- Cable extension (please specify in meters)
- Data Logger

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Root Dendrometer (DRO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for plant size</td>
<td>Diameter <2 cm</td>
</tr>
<tr>
<td>Range of the sensor</td>
<td>11 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.5 µm ±0.12% (CR1000 data logger)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2 - 2.6 µm (dependent on data logger used)</td>
</tr>
<tr>
<td>Linearity</td>
<td><1%</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td><0.1 µm/K</td>
</tr>
<tr>
<td>coefficient of sensor</td>
<td></td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Temperature -30 to 40° C, in and on soil, under water</td>
</tr>
</tbody>
</table>

Graphs

Growth curves of trunk and root of a Norway spruce tree, measured with circumference Dendrometer (DC1) and a root Dendrometer (DRO) in Kranzberger Forst, a study plot of TUM
The DL15 is a battery powered, weather proof, 4-channel data logger. It runs on an internal battery more than one year. It is suitable for long-term monitoring tree growth.

Dendrometer Data Logger (DL15)

The DL15 is a battery powered, weather proof, 4-channel data logger. It runs on an internal battery more than one year. It is suitable for long-term monitoring tree growth.

Technical specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Dendrometer Data Logger (DL15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>84 Kb (43 000 readings) If you connect 4 dendrometers, and collect data every 30 min., the memory will store data of 43000/48/5= 179 days</td>
</tr>
<tr>
<td>Resolution</td>
<td>2.6 µm for Dendrometer types: DD-L, DD-S, DC1, DR, DV</td>
</tr>
<tr>
<td></td>
<td>3.6 µm for Dendrometer types: DC2, DF</td>
</tr>
<tr>
<td></td>
<td>6 µm for Dendrometer type: DC3</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 1%</td>
</tr>
<tr>
<td></td>
<td>Temperature effects compensated</td>
</tr>
<tr>
<td>Interface</td>
<td>USB interface to PC</td>
</tr>
<tr>
<td>Channel</td>
<td>4, for connecting up to 4 dendrometers</td>
</tr>
<tr>
<td>Logging Interval</td>
<td>1 sec. to 18 hours</td>
</tr>
<tr>
<td>Power supply</td>
<td>One 3-Volt CR-2032 Lithium battery. A new battery will typically last one year if logging interval is greater than one minute</td>
</tr>
<tr>
<td>Environment</td>
<td>Suitable for outdoor conditions</td>
</tr>
<tr>
<td></td>
<td>Temperature: Logging: -20˚ to 70˚ C, Launch/Readout: 0˚ to 50˚ C, Humidity: 0-95%, non-condensing</td>
</tr>
</tbody>
</table>

Worldwide users of our dendrometers in more than 40 countries

- Universitat Politècnica de Catalunya, Barcelona
- Chinese Academy of Forestry, Beijing
- Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf
- Universität Bonn, Dendroökologisches Labor, Bonn
- Deutsche Forschungsgemeinschaft, Bonn
- DBIO-APNA, Brussel
- Vrije Universiteit Brussel, Brussels
- INRA-EPHYSE, CESTAS Cedex
- Brandenburgische Technische Universität, Cottbus
- Debrecen University, Debrecen
- Johann Heinrich von Thünen-Institut, Eberswalde
- University of Erlangen-Nuremberg, Erlangen
- University Duisburg-Essen, Essen
- Technische Universität München, Freising
- Bayerische Landesanstalt für Landwirtschaft, Freising
- Justus-Liebig Universität, Gießen
- Thüringer Landesanstalt für Wald, Jagd und Fischerei, Gotha
- Ernst-Moritz-Arndt-Universität, Greifswald
- Universität Hamburg, Hamburg
- Leibniz Universität, Hannover
- Universität Innsbruck, Innsbruck
- BFW, Innsbruck
- Max-Planck-Institut für Biogeochemie, Jena
- University of Western Ontario, London
- Johannes Gutenberg University Mainz, Mainz
- Ludwig-Maximilians-Universität Munich, München
- Helmholtz Zentrum München, Neuherberg
- Tulane University, New Orleans
- Lamont-Doherty Earth Observatory of Columbia, New York
- USDA Forest Service, Olympia
- Norwegian Univ of Life Sciences, Oslo
- University of Oxford, Oxford
- Helmholtz-Zentrum Potsdam, Potsdam
- Beuth Hochschule für Technik Berlin, Potsdam-Bornim
- CSIR Natural Resources and the Environment, Pretoria
- Direction de la recherche forestière, Québec
- McGill University, Québec
- O3HP, St Paul-lez-Durance
- National Taiwan University, Taipei
- Bayerisches Amt für forstliche Saat- und Pflanzenzucht, Teisendorf
- Technische Universität Dresden, Tharandt
- University of Aarhus, Tjele
- University of Arizona, Tucson

Found at http://scholar.google.de/

I Wilhelm, G Lesnino, J Rannertshauser: Süddeutscher Großversuch zu abiotischen Stammsschäden an jungen Alleebäumen

MG Mameli, L De Pau, D Satta, L Zucca: Preliminary Results on the Effects of Partial Rootzone Drying, Regulated Deficit Irrigation and Sustained Deficit Irrigation on Vernetmentino/Grapevine in Sardinia (Italy)

F Volland-Voigt, A Bräuning, O Ganzhi: Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees-Structure and …. 2011 - Springer

J Krepkowski, A Bräuning, A Gebrekristos: Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia Trees-Structure and …. 2011 - Springer

C Liu, S Kang, F Li, S Li, T Du: Relationship between environmental factor and maximum daily stem shrinkage in apple tree in arid region of northwest China. Scientia Horticulturae, 2011 - Elsevier

C Liu, T Du, F Li, S Kang, S Li: Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China. Agricultural Water Management, 2011 - Elsevier

MA RIPOLL, MN JIMÉNEZ… - MANAGED: EFFECTS OF DIFFERENT THINNING INTENSITIES ON DIGITAL DENDROMETRIC DATA RECORDED IN A SEMI-ARID ALEPPO PINE AFORESTATION IN SE …

D Mantovani, M Veste: How much water is used by a black locust (Robinia pseudoacacia L.) short-rotation plantation on degraded soil? 2011 - eprint.polimedia.de

朱建刚, 余新晓: 预测植物瞬态液流的BP神经网络模型: 林业科学, 2010

J Miralles-Crespo, MJ Sánchez-Blanco: Comparison of stem diameter variations in three small ornamental shrubs under water stress. 2010 -hortsci.ashspublications.org

D Otieno: Coordinated Tree Responses to Drought-Vulnerability and Sustainable Production: Hypotheses on Arid Ecosystem Adjustments to Limitations in Water. 2004 - opus.ub.uni-bayreuth.de

江源: 芦芽山林线自与华北落叶松径向生长特征比较. 生态学报, 2007 - ecologica.cn

Ecomatik Dendrometers www.ecomatik.de

Scientific papers related to Ecomatik Dendrometers
Introduction

The well known Granier sap flow sensor, i.e. thermal dissipation probe (Granier, 1985) uses heat as a tracer of sap flow. Due to its simplicity, reliability and affordability, several scientists have used the Granier technique all over the world. However, the technique has always had some shortcomings, which include:

1). Granier technique determines arbitrarily the sap flow to a zero value every night. This contravenes the possibility of night-time transpiration (Granier, 1987) and the fact of refilling process of tree body during the night. (Do and Rocheteau, 2002).

2). The technique ignores the effect of natural temperature gradients of the sap-wood being measured, which range between ±1.5 °C (fig. 1) and can cause considerable error in the results (DO and Rocheteau, 2002).

The SF-L sensor takes into consideration the variations of the natural temperature gradients of sapwood. The sensor uses two reference thermocouples to continuously record background temperature gradients (ΔTR_1, ΔTR_2) of the sapwood. During data processing, values of the temperature differences between the heated needle and the sapwood ambient temperature (ΔT) are corrected by the ΔTR_1, ΔTR_2.

The new sensor therefore considerably enhances accuracy and reliability in sap flow measurements through continuous correction of natural temperature gradients of the sapwood. In contrast to Granier technique, SF-L sensor provides a very stable and more accurate ΔT_{max} value (temperature difference between the heated needle and the sapwood ambient temperature when $\Delta T=0$). ΔT_{max} value is attained under conditions of zero transpiration and zero tree body refilling. This means 100% air humidity and zero tree diameter expansion. The diameter changes are detectable with high accuracy Ecomatik dendrometer (fig. 3).

The SF-L Sensor

Usually there is only one universal ΔT_{max} in a growth period of a tree. The ΔT values in the night are dependent on the refilling state of the tree and the transpiration demand and rarely attain ΔT_{max}. Correct determination ΔT_{max} value enables accurate measurements of the night sap flow. With the SF-L sensor, data processing is also highly simplified because it is no longer necessary to search for maximum temperature differences every night.

The SF-L sensor is easy to use. All necessary tools and spare parts are available at ECOMATIK.

* Patents pending
Fig. 3 Above: Air humidity and radial changes of a 40-year old spruce tree measured with an Ecomatik dendrometer type DD. Increase in diameter at night indicates that the tree continues to take up water even during nighttime hence sap flow is not zero.

Below: Comparison between sap flow measured with Granier sensor (red line) and with SF-L sensor (blue line). The Granier sensor shows zero sap flow every night while the SF-L detects zero value only on the night of 9 July, when air humidity reached 100% and the tree body fully saturated with water.

<table>
<thead>
<tr>
<th>Technical specifications</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Sensor composition 4 needles</td>
</tr>
<tr>
<td>Data Recording</td>
<td>Needle size 33 mm length, 1.5 mm diameter</td>
</tr>
<tr>
<td>Power supply</td>
<td>Heating zone 20 mm from top of the needle</td>
</tr>
<tr>
<td>Input</td>
<td>Cable length 5 m, extendable to 20 m</td>
</tr>
<tr>
<td>Output</td>
<td>Tree size Diameter>20 cm</td>
</tr>
<tr>
<td>-100 µV to 1000 µV DC</td>
<td>Power consumption 0.2 W +/-5%, 84 mA DC, stabilized</td>
</tr>
<tr>
<td>3 differential channels required</td>
<td>Output -100 µV to 1000 µV DC</td>
</tr>
<tr>
<td>12 V DC</td>
<td>Data Recording 3 differential channels required</td>
</tr>
<tr>
<td>84 mA stabilized, suitable for 1 to 3 SF-L sensors</td>
<td>Power supply Input</td>
</tr>
</tbody>
</table>
SF-G Sap Flow Sensor

Introduction

The SF-G is the well-known thermal dissipation probe (TDP) developed by Granier (1985) for measuring sap flow in trees. The sensor consists of two identical manufactured needles with copper-constantan thermocouples and a special heating wire. The two needles are inserted into the sapwood, one above the other 15 cm apart directly below. The top needle is heated with constant energy supply (=constant current source). The temperature difference between two needles ΔT resulted from the above heated and blow unheated needles correlates to the sap-flow-density.

Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor composition</td>
<td>2 needles</td>
</tr>
<tr>
<td>Needle size</td>
<td>33 mm length, 1.5 mm diameter</td>
</tr>
<tr>
<td>Heating zone</td>
<td>20 mm from top of the needle</td>
</tr>
<tr>
<td>Cable length</td>
<td>5 m, extendable to 20 m</td>
</tr>
<tr>
<td>Tree size</td>
<td>Diameter>5 cm</td>
</tr>
<tr>
<td>Power consumption</td>
<td>0.2 W +/-5%, 84 mA DC, stabilized</td>
</tr>
<tr>
<td>Output</td>
<td>100 μV to 800 μV DC</td>
</tr>
<tr>
<td>Logger requirement</td>
<td>1 differential channels</td>
</tr>
</tbody>
</table>
What is matric potential?

There are two ways to measure soil moisture status, namely: Soil water content (SWC) and soil water potential (ψ_s). Soil water content describes the amount of water in a given amount of soil relative to the mass of oven-dried soil. Metric potential (ψ_m), defined as the amount of work that must be done per unit quantity of pure water in order to transport reversibly and isothermally an infinitesimal quantity of water, identical in composition to the soil water, from a pool at an elevation and the external gas pressure of the point under consideration (Glossary of Soil Science Terms, Soil Science Society of America (SSSA), July 2000). If the specified quantity is volume, the potential is referred to as pressure (Pascal). Metric potential (= suction, moisture tension resulting from combined effects of capillarity and adsorptive forces within the soil matrix) is the main component of total soil water potential. In nonsaline soils the total soil water potential (ψ_s) is equal to the matric potential.

Why we need matric potential?

Plant-water relation studies require information on soil water availability (dryness of soil). Soil water availability is expressed as soil water potential (ψ_s), and not water content (swc). The two are however, related parameters:

\[
\text{Soil Water Availability} = \text{Water Potential} = f(\text{Water Content, Soil Properties})
\]

Soil water availability is, therefore, accurately described by its water potential, which is a function of water content and the soil properties. It is not possible to derive water availability only from its water content. For example, a given plant could be turgid and growing very well in a sandy soil with 10% water content, but in clay soil with the same water content, the same plant could be wilting and dying.

Even if data on both water content and soil properties are available, the derivation of water potential from them is not simple, calling for actual measurements of soil water potential.

Due to lack of practicable instruments for measuring soil water potential under field conditions scientists have often used water content measurements to study soil-water-plant relationships. The disadvantage of such water content related studies is that the results cannot be reproduced and compared under different soil conditions. Many scientists have been working on plant-water relations to assist farmers identify the threshold value for irrigation water supply and several publications exist to the effect. However, none is able to answer the question: “How much soil moisture should I keep to meet optimal demands of my plants?” On a global context, this has lead to enormous loss of water resources. This problem could be solved, if we used soil water potential instead of soil water content for our research works and in water resource management.

* Patents pending
Equitensiometer consists of two parts: water content sensor and equilibrium body. The water content sensor is permanently attached to the equilibrium body and determines the water content in the equilibrium body instantaneously. The equilibrium body has a stable soil moisture characteristic.

During measurements, the equilibrium body acquires matric potential of the surrounding soil and this is recorded by the water content sensor and converted into matric potential.

The concept of describing soil water availability for plants using water potential (Ψ) is known since 1907 (E. Buckingham). Scientists and engineers long recognized the importance of this measure and several attempts have been made in the last century to build equipment that can directly measure soil water potential (Ψ_s). Currently, there are only three existing techniques available namely; tensiometer, resistance block (gypsum block, watermark) and psychrometer. All the three techniques however, have practical limitations with regard to range of operation, accuracy and costs. Accurate monitoring of soil water potential under outdoor conditions is still a pipe dream for many scientists.

Comparison of techniques for measuring matric potential

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Range (kPa)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance blocks</td>
<td>-100–-700</td>
<td>1. Inexpensive</td>
<td>1. Must be calibrated individually by user
2. Unreliable measurement
3. Just for rough estimating the matric potential</td>
</tr>
<tr>
<td>Psychrometer</td>
<td>-200–-10000</td>
<td>1. Useful in very dry soil
2. Measures total water potential</td>
<td>1. Does not function in wet soil
2. Sensitive to temperature gradients in the soil
3. Expensive
4. Not suitable for outdoor conditions</td>
</tr>
<tr>
<td>Tensiometer</td>
<td>0–-85</td>
<td>1. Relatively reliable</td>
<td>1. Does not function in dry soil
2. Costly maintenance and service
3. Not suitable for monitoring water availability for plants</td>
</tr>
<tr>
<td>Equitensiometer</td>
<td>0–-1500</td>
<td>1. Relatively reliable
2. Covers the whole range of matric potential for plant growth
3. Maintenance-free measurement</td>
<td>1. No linear output</td>
</tr>
</tbody>
</table>

A standard version sensor has a measuring range from 0 to -1500 kPa (0–-15 bar). For special requirements, the range can be extended up to -2500 kPa (fig. 1), but with reduced accuracy. A refill such as in transducer tensiometer is also not necessary.

Effect of soil properties on the measurements

Unlike water content, water potential is an absolute measure and is independent of physical soil properties. For this reason the performance of Equitensiometer is not affected by the variation of physical soil properties (density, clay/sand/stone content and organic matter content).

The matric potential is derived from water content read within the equilibrium body. This is a decisive deviation from the gypsum block, which converts the electrical conductivity of soil solution to matric potential and is very
sensitive to conductivity of soil solution. Thus the EQ15 operates within a wide range of conditions and is independent of the soil chemical properties. However, in saline soils with conductivity >1 m S/cm, the results may be shifted to the dry range.

- **Hysteresis**
 Equitensiometer is especially suitable for continuously monitoring matric soil water potential. The equilibrium body consists of materials with higher water conductivity than any soil types. Under natural rains or irrigation conditions, the sensor can accurately follow any changes in soil matric potential without hysteresis (see fig. 2). But under artificial conditions if the matric potential is rapidly changed by more than 20 kPa/minute, the sensor may show hysteresis. This property limits instantaneous measurements with the Equitensiometer.

- **Installation**
 Equitensiometer is easy to install. The sensor is installed at the desired depth by burrowing and refilling the hole. In case of stony soil the sensor should be covered with quartz powder (or soil material with particle size between 20 to 100 µm) to improve the contact between the equilibrium body and soil. For installation in deep soil the use of the type EQ15/Adapter with an extension tube is recommended. The disturbed soil structure does not affect the sensor performance.

- **Data recording and Data processing**
 The Equitensiometer output is volt and ranges between 100 and 1000 mV. Any data logger with function of voltage measurement can be used for continuous data recording. For dis-continuous measurements, the data can be read out with a simple voltmeter. Ecomatik supplies different logger types for different requirements. Each Equitensiometer is provided with its own calibration certificate (fig. 3), which gives the relationship between mV output, as read by the Equitensiometer, and its corresponding matric water potential in kPa. With the calibration certificate (fig. 3), the data output can easily be automatically converted into kPa by data logger or by calculating using a computer.

Fig. 2: Comparing the sensitivity of the EQ15 (red line) with transducer tensiometer (blue line). The soil was periodically irrigated. Either during the wetting or drying phases there were no significant differences between both sensors.

- **Long term measurements**
 Fig. 4 shows results from Equitensiometer, when measurements were conducted in two neighbouring spruce and beech stands in Bavaria. The sensors worked for more than two years without any servicing.

Fig. 4 Matric water potential in two neighbouring spruce and beech stands in Bavaria continuously measured with Equitensiometers. Corresponding to the transpiration characteristics the soil under spruce stand in Spring and in late Autumn is dryer than under beech stand (Unpublished data of Technical University of Munich).

Fig. 3 Typical Calibration data of Equitensiometer
Scientific Papers related to Equitensiometers

Booth D: Incubation of rigid-shelled turtle eggs: do hydric conditions matter? Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. 172 (7), 627-633, 2002

Roberts J, Rosier P: The impact of broadleaved woodland on water resources in lowland UK I. Soil water changes below beech woodland and grass on chalk sites in Hampshire. Hydrology and Earth System Sciences, 2005, 9 (6), 596-606

Additional cable fitted to EQ15. Max. recommended length 100 m.

EQ15/Cable Additional cable fitted to EQ15. Max. recommended length 100 m.

Data Logger On request.
References (some of our customers) www.ecomatik.de

Argentina
CONICET-INTA EEA Bariloche, Grupo de Ecología Forestal, Bariloche

Australia
PlantSensors, Nakara

Austria
Universität Innsbruck, Institut für Botanik, Innsbruck
BPW, Abt Ökophysiologie der Alpinen Waldgrenze, Innsbruck
Universität Wien, Department of Geography and Regional Research UZA II, Wien
Preal Instruments GmbH, Weiz

Belgium
Vrije Universiteit Brussel, WE-DIBIO-APNA, Brussels
Vrije Universiteit Brussel, Toegepaste Ecologie & Milieubiologie, Gent
Vrije Universiteit Brussel, ETRO Department Building Ke, room Ke 3.22, Brussels
Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren

Brasil
Fundacao de Desenvolvimento Científico E Cultural-Fundec, Campus da Universidade Federal de Lavras

Bulgaria
DANS PHARMA, Sofia

Canada
Direction de la recherche forestière, Ministère des Ressources naturelles et de la Faune, Québec
McGill University, Department of Natural Resource Sciences, Québec
University of Western Ontario, Department of Geography, London
Macdonald Campus of McGill University, Department of Natural Resource Sciences, Québec

Chile
MorpH2O SA Latinoamerica S.A., Buin

China
LICA United Technology Limited, Beijing
Beijing Channel Scientific Instruments Co., Ltd, Beijing
Chinese Academy of Forestry, Research Institute of Forest Ecology, Environment and Protection, Beijing
Xishuangbanna Tropical Botanical Garden (CAS), Yunnan

Colombia
Departamento Administrativo.Cali - Valle del Cauca

Denmark
University of Aarhus, Faculty of Agricultural Sciences, Dept. of Agroecology and Environment, Tjele

Ecuador
Sistemas Tecnológicos, Quito

France
Agroscope.Luzen
O3HP St Michel l'Observatoire
INRA-EPHYSE, Site de Recherches Forêt Bois de Pierrotton, CESTAS Cedex

Germany
Universität Bochum, Geographisches Institut, Bochum
Universität Cottbus, Institut für Rekultivierung
Universität der Bundeswehr München, Institut für Tiefbau, Neubiberg
Universität Freiburg, Institut für Forstbotanik und Waldernährungslehre, Freiburg
Universität Freiburg, Institut für Waldwachstum, Freiburg
University of Freiburg, Meteorological Institute, Freiburg
Universität Göttingen, Institut für Zuckerrübenforschung, Göttingen
Universität Köln, Institut für Geophysik und Meteorologie, Köln

University of Bayreuth, Department of Plant Ecology, Bayreuth
University of Stuttgart, Institute of Geography, Stuttgart
Urania Agrochem GmbH, Hamburg
UP Umweltanalytische Produkte GmbH, Cottbus
Technische Universität München, Lehrstuhl für Ökophysiologie der Pflanzen, Freising
University of Erlangen-Nuremberg, Institute of Geography, Erlangen
Technische Universität Dresden, Institut für Bodenkunde und Standortslehre, Fakultät Forst-, Geo- und Hydrowissenschaften, Tharandt
Universität Bonn, Dendroökologisches Labor, Geographisches Institut, Bonn
Feingartenbau K.Fischer GmbH, Drebach
Justus-Liebig Universität, Institut für Pflanzenphysiologie, Gießen
Interdisziplinäres Forschungszentrum für Umweltsicherung (IFZ), Gießen
Universität Bochum, Institut für Botanik, Hannover
Theodor Friedrichs & Co. GmbH, Schenefeld
Hochschule für Forstwirtschaft Rotenburg, Schadenweilerhof, Rotenburg am Neckar
Bayerische Landesanstalt für Landwirtschaft, Institut für Agrarökologie, Ökologischen Landbau und Bodenschutz, Freising
Johann Heinrich von Thünen-Institut, Bundesforschungsanstalt für ländliche Räume, Wald und Fischerei, Eberswalde
University Duisburg-Essen, Dep. of Applied Botany, Essen
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Potsdam
Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising
Johannes Gutenberg University Mainz, Department of Geography, Mainz
University of Bonn, Department of Geography, Bonn
Degerhaim-Heidenheim
Helmholtz-Zentrum München, Institut für Bodenkologie, Neuharzburg
Thüringer Landesanstalt für Wald, Jagd und Fischerei, Referat Waldzustandsüberwachung, Gotha
Umwelt-Geräte-Technik GmbH, Müncheberg
Universität Hamburg, Zentrum Holzwirtschaft, Hamburg
Bayerisches Amt für forstliche Saat- und Pflanzenzucht, Sachgebiet 3, Teisendorf
Ahlborn Mess- und Regelungstechnik GmbH, Holzkirchen
University of Bonn, INRES Gartenbauwissenschaft, Bonn
Universität Bonn, Institut für Landtechnik, Bonn
Brandenburgische Technische Universität, Lehrstuhl für Bodenschutz und Rekultivierung, Cottbus
Universität Hamburg, Zentrum Holzwirtschaft, Institut für Holzbioökologie, Hamburg
Deutsche Forschungsgemeinschaft Bonn
Max-Planck-Institut für Biogeochemie, Jena
Johannes Gutenberg University Mainz, Department of Geography, Mainz
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Potsdam
Helmholtz Centre for Environmental Research – UFZ, Department of Ecological Modelling, Leipzig
References (some of our customers)

CEBra - Centre for Energy Technology Brandenburg e.V., Cottbus
Ernst-Moritz-Arndt-Universität, Institut für Botanik und Landschaftsökologie, Greifswald
TU Dresden, Fakultät für Forst-, Geo- und Hydrowissenschaften, Dresden
TU Dresden, Forstbotanik. AG molekulele Gehölzphysiologie, Tharandt
Ernst-Moritz-Arndt-Universität, Institut für Botanik und Landschaftsökologie, Greifswald
Technische Universität Dresden, Institute of Soil Science & Site Ecology Faculty of Forest, Geo & Hydro Sciences, Tharandt
Hungary
University of Debrecen, Department of Botany, Debrecen
University of Debrecen, Centre of arts, humanities and sciences, Debrecen
India
Miras Instruments and equipments, Chennai
SHAILRON TECHNOLOGY PVT. LTD, NEW DELHI
KARTHIKEYA OVERSEASB, Bhopal
Iran
Tajhz Fanavaran Zangan Co., Tehran
Israel
Ag-sense LtdRamat-Yshay
Italy
Lombard & Marozzini srl, Rome
SIMACCO di Resti Raffaele, Anzio
Università di Padova, Anfodillo-Laboratorio IDEA, Legnano (PD)
Vivais Forestale E.R.S.A.F., Curro (BG)
Magazzino Azienda Special, Per Regolamentazione Dei Consi D’Acqua, Prato Isarco (BZ),
UNIVERSITA’ DI TRENTO, DIVISIONE INGEGNERIA, 38050 POVO (TN)
Japan
TERRA-TECH, INC. Tokyo
KAYO DENSHI Co., Ltd. Saitama
Mewafosis Co., Ltd., Osaka
Malaysia
Universiti Malaysia Perlis, Jejawi
Marocco
Green solutions sarlAGADIR
Sté. Phyto Consulting sarl. Aït Melloul
Mexico
Celeritas Trading & Consulting S.A. de C.V., Naucalpan de Juárez
New Zealand
AgFirst BOP ltdKatikati
AgFirst Technical Services Manager, Motueka
Netherlands
Institute of Agricultural and Environmental Engineering (IMAG-DLO), Wageningen
GLOWA Volta Project Water Management, Civil Engineering & Geosciences TU Delft
Praktijkonderzoek Plant & Omgeving (PPO), Sector Fruit, Zetten
Norway
Norwegian Univ of Life Sciences, Agresso fakturasentral, Oslo
Peru
HIGH TECH SERVICE S.A.C., Proyectos & Servicios, Miraflores - Lima
Portugal
Mezio Telecomunicações e Electrónica, Lda PORTO SALVO
Romania
Beexona Company SRLBacau
S.C. FEDERAL EXPERT S.R.L, Bucuresti
AMEX Import Export SRL, Bucuresti
SC Eltex Echipamente Electronice Industriale srl, Bucharest
EUROPANDA S.R.L
Forest Research and Management Institute (ICAS), Voluntari
Iflov
EUROPANDA S.R.L, Camulpung Moldovenesc, SUCEAVA
Russia
FITO Ltd.Moscow
South Africa
Natural Resources and the Environment, CSIR, Ecosystem Processes and Dynamics, Pretoria
South Korea
Encosys CO., LTD., Room 232, 8 Dong, Anyang Kyungui-Do
Spain
Equipos Instrumentacion y Control SL Algente, Madrid
PROQUILAB, S.A.CARTAGENA (MURCIA)
Adm Juver, slSanto Angel, Murcia
TSC (Techno-Sciences Consulting), Sevilla
Unibritica S.L., h, La Roca del Valles
Universitat Politècnica de Catalunya, ns, Barcelona
Libelium Comunicaciones Distribuidas S.L., Zaragoza
Government of Aragon, Agricultural Research and Technology Centre (CITA) Forest Resources Unit, Zaragoza
Fundación Instituto Tecnológico de Galicia, A Coruña
GEONATURA S.L., Madrid
Switzerland
Lund University, Earth and Ecosystem Sciences, Lund
Switzerland
Institut für Angewandte Pflanzenbiologie, Schönebuch
Swiss Federal Institute for Forest, Snow and Landscape, Research WSL, Birmensdorf
Universität Basel, Botanisches Institut, Basel
University of Applied Sciences of Central Switzerland, Institute of Electronics, Horw
Stump ForaTec AG., Abt. Messtechnik, Naenikon
ETH Zürich, Institut für Geotechnik, Zürich
Taiwan
National Taiwan University, School of Forestry & Resource Conservation, Taipei
Jauntering International Corp., Taipei
Ming-Guan Instruments Co., Ltd., CHANGHUA CITY
Thailand
Mahidol University, Faculty of Environment and Resource Studies, Nakhon Pathom
UK
Delta-T Devices LtdCambridge
University of Oxford, School of Geography and the Environment, Oxford
Wolfson CollegeOxford
USA
Lamont-Doherty Earth Observatory of Columbia, Tree-Ring Laboratory, New York
Department of Biological Sciences, University of Alabama, Tuscaloosa
IAB Tools 757009Fairbanks
Tulane University, Ecology and Evolutionary Biology, New Orleans
USDA Forest Service, Olympia Forestry Sciences Laboratory, Olympia
University of Arizona, Natural Resources and Environment, Tucson
Utah State University, Ecology Center UMC 5205, Logan
UC Davis, Land, Air and Water Resources Plant and Environmental Sciences, Davis
Tree Consulting, Arizona
U.S. Department of Agriculture, Forest Service Pacific Northwest Research Station,
U.S. Department of Agriculture, Forest Service Pacific Southwest Research Station
Ordering Information
Details regarding ordering information, accessories, consumables and spares for our instruments can be found in our prices lists, available on request.

Payment
Our normal terms are payment in advance of shipment, or by irrevocable letter of credit. Details are available on request.

Guarantee and Service
ECOMATIK guarantees its products against defects in manufacture or material for a period of 24 months from the date of delivery. Full details of the guarantee, terms and condition of sale, and arrangements for servicing and recalibration are available on request.

ECOMATIK
Muenchner Str. 22
D-85221 Dachau/Munich
Germany
Tel: +49 8131 260738
Fax: +49 8131 274434
website: www.ecomatik.de
e-mail: info@ecomatik.de